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ABSTRACT

Three dimensional off design flow fields are calculated for stream
Mach numbers in the range 1.3 to 4.0 and corresponding to attached and
detached shocks at the leading edges of a reentrant pyramidal waverider
geometry. The MacCormack shock capturing vergidn ;f the Lax-Wendroff
finite difference technique is used with grids chosen to align with
surface, symmetry, and approximate shock traces in the transverse plane.

Separate natural grid systems are defined for the compression and ex-

pansion regions, and an alternating region algorithm is used in combination

with a sequential transfer of the edge regionzbduﬁd%rj conditions. The
latter are derived from overlapping portions of the computational grids

as integration proceeds axially to an asymptotic conical field. Equi-
valent attached shock cases result from either of two approaches: the
alternating region algorithm, or a consideration of solely the compression
region with uniform unknown conditions assumed near the edges. For
detached shock cases overall 1ift and drag coefficients exhibit smooth

variations between the attaéhed edge and detached apex limits.

(i1)




Ep— -~

CONTENTS

Abstract
List of Figures
Symbols

Introduction
Geometry, On-Design Basis, Off-Design Limits
Descriptive Field Equations and Boundary Conditions
Conservation Equations
Boundary Conditions be kag by
Boundary Conditions for Cartesian Conical System
Finite Difference Numerical Scheme
Predictor Corrector Forms
Grid Systems
Grid Parameters
Boundary Conditions
Decoding '
Solution Procedures
Numerical Results
Conclusion

Appendix 1 Computer Code
Code Glossary

Flow Chart
Listing
Tables
Figures
References 3

(1)

i
iv

vi




W 00 N O o &

10.
11.
12.

13.

4.

. _ Caret Waverider Geometry

LIST OF FIGURES f

Normal Section Angle Variation in Terms of Design Conditions

Span Influence on Side Edge Shock of Weak and Strong Type

Attached Shock Flow Turning in Surface Plane’

Coordinate System

Grid Definition and Domain (APBC) for Lower Region

Grid Definition and Domain (DMEF) for Upper Region

Surface Boundary Condition Constraints

Symmetry Plane Boundary Condition Interpplation :

Degoding Constraint for Physically Interbretab]e State Vector Components

Mach Cone Intersection with Surface, Attached Shock

Pressure Distributions From Surface to Free Stream Along Symmetry Plane;
s*=2, B = 35*
(a) 6 =5.75°, M_
(b) 6 = 22.18°, M_

1.6, 1.8, 2.0
2.5, 3.0, 3.5, 4.0

Surface Pressﬁre Coeffﬁcient Distribution; s* = 2, Bp= 35°
(a) 6 5.75°, M_=1.55, 1.6, 1.8, 2.0
(b) & 5.75°, M_= 1.3, 1.4, 1.55, 2.0
(c) 6 = 22.18°, M_= 2.5, 3.0, 3.5, 4.0

5°

Shock Traces; s* = 2, BD

(a) 6 = 5.75°, M

(b) § = 5.75°, M

(c) 6 = 22.18°, M

1.55, 1.6, 1.8, 2.0
1.3, 1.4, 1.55

2.5, 3.0, 3.5, 4.0

(iv)




5.78°
§.75°

15. Lift Coefficient Variation with Mach Number; BD = 35°, §

16. Drag Coefficient Variation with Mach Number; 8 = 35°, &
17. Lift and Drag Coefficient Variations with Mach number; Bj = 35°, § = 22.18°

b b b




L A N s A P i e B P £ s ok i

SYMBOLS

a,b,c boundary conditions parameters, eq.(4-29)
B body surface, eq. (3-9) ®

CD drag coefficient

& 1ift coefficient i
Cp pressure coefficient, 2(p-p_)/YM2p_
E,F,G,H state property vectors, eq. (3-2)

E,F,G,H  state property vectors, eq. (3-8)
G

E*,F*,G*,H* state property vectors, eq. (4-11), (4-16)
g surface geometry n dependence, eq.:(3~27).
6, G eqs. (3-33), (3-35)
1.3 mesh indices for ¥,X grid
im’jm maximum i, Jj
jn jth grid line approximating normal to surface
; eq. (4-18) ‘
k (v-1)72
k eq. (4-31)
Mach number
, n,j,k mesh indices for state vectors E,F,G,H
n.t unit normal, tangent vectors
n.sn_sn,  components of n
) pressure
P eq. (3-26)
q velocity magnitude
r, os 6 spherical coordinates
R contents of radical, eq. (4-49) }

(vi)

L R A YT




S,S*

tr’to’te

U,v,w

"c’vc’wc

vmin’ min
XsYs2Z

®p,N,0,B

> <X W

s 6N

TsNs€

¥sX
'pu ’wz
¥sX

()
()

(g
(e
%

shock surface, eq. (3-9)

dimensional, dimensionless semi-span, eq. (2-4)
components of t |

velocity components e
velocity components in (r, o, 9) s;stem

v,w for minimum (q2-u?), eq. (4-32)

Cartesian coordinates, Fig. 5

shock angle (on design, normal to side edge, off-design,baseplane)
tan”'(g;/n;), eq. (4-44) i
specific heat ratio

wedge angle (symmetry plane, normal to side edge)
conical Cartesian coordinates, eq. (3-5)

density

flow direction relative to edge, eq. (2-10)

grid coordingtes; eq. (4-6), (4-12)

surface apex angies, eq. (2-2), (2-3)

normalized grid coordinates, eq. (4-8)

post shock condition

free stream

base(transverse) plane, Figure 1
conical system, coordinate

on-design

(vii)




Bt A e e kot T i Ao S G

(),
(),
()
£
opp
(2%
()
()
(),
()
(r

upper (expansion) region

lower (compression) region

normal; control point for j, grid line
off-design

symmetrically opposite, eq. (4-43)
¥ grid line origin, Figure 6
shock; sonic

tangential; edge tip

X grid line origin, Figure 65 upper surface

wall

derivative with respect ton  ;, ol




e

1. INTRODUCTION

Waverider configurations have been of interest for some time for
supersonic flight since the concept offers an implied control over con-
fined pressure fields for practical three dimensional bodies. Concep-
tually an inverse approach is adopted to determine geometric surfaces
consistent with fields derived from specified shock surfaces. Typically,
but not necessarily, the shock surface is of a simple kind (planar or
circular conic, e.g.), and the associated body corresponds to that
specific (on-design) flow field. Nonweiler's original suggestion (1)
was a delta planform, caret cross section wing of finite thickness and
anhedral (Fig. 1) which matched a planar shocklsurface extending between

(2) and Maikapar(3)

the leading edges on the compression side. Gonor
considered an integral number of similar components arranged circum-
ferentially so as to form a star section, right reentrant pyramid.
A number of studies have indicated that generalized waveriders under
on-design conditions offer advantageous 1ift to drag ratios and drag
reductions for equivalent vojumes.(4’5)

The essential geometric features of the waverider cross section
are the external and internal corners at the side edge and midspan
(or reentrant rib) locations. The same features are common, of course,
to edges and junctions of many geometric components of aeronautical

interest and in particular for high speed engine inlets of a truncated

pyramidal kind.




While on-design field evaluations are relatively simple, the

off-design condition must be anticipated in most instances, and is in

fact assured if viscous influences were to be taken into account. The
shock surfaces are then unknown, rotational fields are certain to result,
and shock detachment may occur. Several studies have explored the
off-design field on the basis of integral methods,‘linear departures, and
numerical methods, all for attached shock cases.(G'g) The detached leading
edge case was considered on a corrected Newtonian theory basis (10) and
free flight data for modified (blunt edge) caret sections is availab]e.(]])
The present objective is the application of a shock capturing finite
difference method to caret waveriders for sucq qfﬁ.design conditions
including detachment from the leading (side) edges. A second order,
explicit algorithm is employed with grid systems defined explicitly for
corner section configurations and approximate alignment with average

shock trace locii. For the detached shock cases an alternating compression/

expansion region algorithm is used during the convergence brocess following

the "time 1ike" axial coordinate direction.




2. GEOMETRY, ON-DESIGN BASIS, OFF-DESIGN LIMITS

The caret wing geometry may be expressed in terms of the span, 2s,
and the on-design flow deflection, &, and shock, BD’ angles (Figure 1).

For Mach numbers other than M_ the section angle normal to the leading

D
edge controls shock attachment if the shock surface remains attached at

the apex. The normal section angle is

” : . 2 = 3 . 2
= cosBD c0S$§ Sin wu s1nBD sin§ cos wu

8y = Cos . 72
siny, [cos?gy ~ cos?y, cos?(By-6)] (2.1)

” 3
I TR

where the upper surface apex angle is defined:by

p = cos b ' (2.2)
¥ [1+ (s*cosf-’b)z]]/2

and similarly

173 c;os'l {cos&u cosS(1 + tanBD tans) } (2.3)

Here s* is the local semispan in units of axial distance from the

nose, or equivalently

tan BD
s* = (2.4)
tan BB

in terms of the on-design shock angles in sections parallel and trans-

verse to the mainstream.




The on-design condition is that for which identical disturbance
fields result for oblique shocks based on either (MD. 8) or (MN’ GN) pairs.
The normal section angle, GN’ may be greater or less than § depending
upon the relative span (Figure 2), and for attached shocks the normal
component of Mach number at the leading edge is s

My = M, sinv;u = M_sin [tan™?(s*? + tanZBD)]/z] (2.5)

Thus the geometry defines a wide class of swept wing flow field
behavior in the region "adjacént" to the leading edge if subject to
attached oblique shock conditions. Typical pgramg;yic|variations for
geometries based on Mp = 2 and 4 are listed in:Tébie 1. Figure 3
il]ustrafes the span influence on the presence of weak or strong shocks
at the side edge for the Table 1 cases applied to selected MD and Bp
levels.

A useful bound to the disturbance region when shocks are attached
is provided by reinterpreting the geometry of eq. (2.1). With SN and
§ replaced by BN and Bo’ i.e; by the shock angle normal to the leading
edge and the angle (Figure 1) formed by the upper ridge line and the

intersection of the shock surface with the symmetry plane,

cospy, cosB, sinzwu - singp sing, COszwu

tOS BN = o 2 2 2 ]/2 (2.6)
siny [cos?gy - cos ¥, cos (BD-BO)]
This {s an implicit relation for the farthest possible extaznt of that
shock surface; i.e.
- . *
By = By(Bys Bpss*) (2.7)




The on-design value of BN follows from eq. (2.6) on taking Bo = BD;

there results

> 1/2
cos(BN) = |— cosBy) (2.8)
D s* + tanZBD

T !

Typical values for BN and Bo with departure of M, from the design
value are presented in Tables 2 and 3.
The design condition, geometry and stream Mach number, also
can be viewed as the configuration for which the disturbance is im-
parted no lateral momentum. The flow downstream of the shock surface
proceeds parallel to the geometric symmetry pTaﬁe? LA %easure of
off-design is therefore the turning relative to that plane, since the
symmetry condition then implies that some corresponding compression
or expansion must appear in order to redirect the flow. The flow
direction, t, from the leading edge and in the plane of the lower
(compression)surface follows from the component Mach numbers after
the attached shock (Figure 4)‘
]E+ I%l-(MNsinBN)2
MNZ =
2 sin?(B-8,)[¥(Msing)? - L1

(2.9)

(M cosy,,)?
9 3 e Z(Y'i)TMN SinBsz']
(v+1)? (MN sinBN)2

=7

[ v(My singy)? + 1]




(MN sinsN)2+ 5
6(MN sinBN) sin(BN-GN)Mmcoswu

if =

3,/ EN]

tant = (2.10)

. An
MT

(T

On-design this reduces to Tp = Vg and (TD- 1) 2 0 implies flow
towards either the side edge or the symmetry plane. Tab]e 3 includes
some typical turning levels and the corresponding lateral component of

velocity.

o okl 45 .8




3. DESCRIPTIVE FIELD EQUATIONS AND BOUNDARY CONDITIONS

Conservation Equations

The governing equations for inviscid, steady flow, of a perfect
gas, with pressure and density in units of undisturbed stream stagnation
values and velocity components in units of the maximum adiabatic velocity,

expressed in Cartesian coordinates are

Ex + Fy + Gz =0
where
e o O ol T 3
= |kp + pu? F= [puv ~ _|puw
puv . kp + pv2|? oW
puw pVW kp + pw?

and k = (y-1)/2Y. The adiabatic energy equation then specifies

p = p(1-q?)

For attached nose shocks an axial scale length is absent and a

conical coordinate system is appropriate. If (Figure 5)

T = &nx

= .
n=% xsf)
E=2 (=35%)

then the (x,y,z) to (z,n,&) transformation implies

(3.1)

3.2}

(3.4)

(3.5)




8 a
2 .2 na £
X X0C X an X of
5 3
oy Xs* 3n (3.6)

TR !

§r 1 8’
oz xs* 3E *

and so eqs,(3.1) become the weak conservation form

E. + F .+ &G+ H =0 (3.7)

with

(3.8)

Boundary Conditions

| Say the body an& shockESurfaces are given by
E 1 B(r, 0, 8) =0 ’ S(r,0,8) =0 (3.9)
| in a spherical (r, o, 8) coordinate system. A conical body geometry
may then be taken in the form
B.(c, 8) = o- f(8) =0 (3.10)

with a unit surface normal n = ("r’ Ngs ne) given by




By7 + L 3Byj 4 (LB

s VET 2 r 30 rsing 236
VB 2 2 1/2
o8 1 3B |
[Gr) + G5 ) * GFsmo ve) ]

(sino)d - (f')k
1/2

(sin%c + f'2)

The unit surface tangent T = (tr’ ty te), orthogonal to 7 and n in

a positive o

The velocity

which are

sense, is

=¥Xﬁ = % = = S : k
17 x 7 Ngd + Ak (0, ';"e"."u)'
vector q = (u_., v_, w_) has components at the surface
ol -
v.sino- w_f'
=(q-ap = —= - n
(sin%c + f")]/z
e el 2 vbf' +twsino
=ud+ (qet)t = u i+ t

¢ (sin% + £'2) /¢

and for GN =0 it follows that

(3.11)

(3.12)

(3.13)

(3.14)




T ——
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For the case of a planar conical surface such as in Figure 1 the

eq. (3.10) description implies

s* tand sinB

f(o) = tan“[ 8 ] (3.15)
8

tang) sin(e-BB) + tand cos6 sinB
i ]

' 3
H

and

tans siné sing, - tang,cos(6 - B )
f'(e) = sino coso[ . . 2

tans cos@ sinBB + taneD sin(e -BB)

_ (3.16)
. _ __sinogcoso by b e
tan(e - BB+ 68)
=
Here (B-BB +68) is the angle in the transverse (y,z) plane between
the surface and the ® = constant plane. Thus eq. (3-14) becomes
W tan(e -8, + &,)
.= - B8 (3.17)
Sy €os o
and implies that
W v
0 w Cw
(e - 884-68) = |z corresponds to . = 0 when lie in the surface plane.
2 Co Cw (3.18)

The normal and tangent expressions egs. (3.11), (3.12) also are valid

for a conical shock

Sc(a.e) 5.9 5 fs(e) =0 (3.19)




— -

n

and in the conical system the components of the free stream velocity

q, = (qc0s0)i - (q sino)j

are
2 gt

sin :
q.sin‘o,

$0n 2 12 ]/2 S
(sin o + fs )

31

q“N S -

]

qwfS sincS

Sl 12
+f

sin“o .

ﬁmw = (qwcoscs)7 - (f; j+ sinosE)

i o Yy o8

The shock angle is

q sinZo
g(e) = sin'1|q°°N | = sin'l[ - ]

tn 12 ]/2
(sin og + fs )

and the post shock velocity components follow from the usual shock

relations and

= -q n

I.e.,
(Y-1)(M_sinB)? + 2

q A
SN N (v+1)(M_sinB)?

s A S, €F

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)




and

Us » quOSGs = uoos
1 P
L R 12 — =}
= ; e SIno, * fs 2 " P
Vg = -q,sinog + =v, |le ——— (3.25)
sinzoS + f;z (y+1)(M sinos)2 . s Y(M sino )2
\ o i 0 S
Ps
2 £ { 1 S‘inzos qgo(]- E 1 ) 1/2
w S e— - = — — - ——-2——‘
s Y+l q°° S _(Mwsin 05)2 sinzos + f; 2 YMooz P sin Os
where : ;: L Fet
pow 2O ES el .53
2YM 2 (Pe Y+1 e

Boundary Conditions for Cartesian Conical SysStem

For the modified Cartesian, conical, system of egs. (3.5) - (3.8):

B, =£-g(n) =0
(3.27)
- s*(ng'-£)1 - g'J + k : )
n = = (n,n_,n
([s*(ng'-£)]2 + 'z + 1)/2 &7 "n* ¢
The surface boundary condition EN = (q*n)n = 0 then implies
w W
n_+on s*(ng' =€) + =
(%) e [_';_ﬁ__"_.é] = [ , g (3.28)
W n Jw 9 W

i
$




Also the tangent component is the surface velocity vector

n_+ (g) ng

Gp = 3§ =u, [1 wgt JALE (3.29)

i !

Specializing to a planar conical surface as in Figure 1, eq. (3.27) is

specifically (Figure 5)

r

tang, - tané
[ Ds* ] + t:ﬂﬁ [Tower surface]

£ = 1 (3.30)

(tanBB) n -+, -+ u[upper surface]

E.g., for the lower surface eqs. (3.28), (3.29) are:

W
(i) - tané
v s
(§9 = :
W 9
(3.31)
i () - tand
T SR e T+ R
q = —————r—— A
T " w gi u’y
At a shock surface By ™ gs(n) the shock normal is of the same form as
in (3.27). Now, however,
q, = u.i (3.32)




a0 A s R s g i S sk b s
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and the normal and tangential components are

Ugo s*(ngg - &)

n
(1 + GS)]/2 [s*(ngg - &) L

(3,)y

; . ., 93 K
()7 =177 % [ 67 + ]

i b 1

where G, ™ (1 + 9;2)/[3*(ng; - ES)]2 and the éhock angle is

1
1

1

|
B(l'l) = Ssin m

The post shock components are then

<
(7]

]

1

[{=]
7

=
)

=
]

1+8G
S D Ueo )
s*(ngg - £5)(1 + Gg)

with

o (FINI+2046)  s*ing - €)
(Y+])M°°2 TS*(HQ; G ES)]

(3.33)

(3.34)

(3.35)




15

4. FINITE DIFFERENCE NUMERICAL SCHEME

Predictor Corrector Forms

The solution of the descriptive system, egs. (3.7) was carried out
using a finite-difference technique with the Fompu;ation advanced along
the time-1ike axial, g, coordinate until steady (axially uniform)
conical conditions were achieved. The specific predictor/corrector
algorithm was the alternating direction, explicit difference scheme of
g 1121

second order accuracy as suggested by MacCormac

If the differential description is (egs. (3.7))

v

I !

B = & -6 -8 (4.1)

z n g€
and (n, j, k) are the indices for grid lines in the (g, n, &) directions

then the predictor provides the intermediate state vector

entl _ en  _ Afen _gn _ &L =0 _ gnh

Eie " Semiige et BV, a5,

_gn (4.2)
e

and the corrector provides

En+1 3 'IE[-En + ’-én+1 o BE (l-:n+1 _ §n+1 AC(GY]‘*'] _GT.H‘]

j3k- Jsk Jsk- An Jsk j-]Sk B Kﬂ Jsk Jsk ‘])

Zn+l
Ay 2
(4.3)

Here

=n i@
E5 ok

E(naz, jan, k 4g) (4.4)
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and from eqs. (3.2) and (3.8)

n , n

P = FHE5 )

an . n i &

e P A §55) _;
"!

an o e 5

Hy A(E; )

A solution is converged upon achieving constant Eg after advancing
?

k
n a sufficient number of times.

g s
& 11 ':'. L]

Grid Systems

For planar surface waveriders the natural grid system is one that
conforms to the surface, symmetry, and shock traces in the (n,&) plane.

The shock-capturing capability of the MacCormack algorithm and the

unknown location of the jump distribution suggests the quadrilateral
(APBC) bounded grid formed by new coordinates (x,¥) which are defined

as (Figure 6) (s i i |

X = g
Y |
(4.6) ;
E-& ‘s
¥ =
R |

These are essentially angular measures from the surface and symmetry
planes for the lower (compression) side. Approximate grid alignment
with shock boundaries then follows from choices for the (nR,ER) and

(nu, Eu) centers and (Xmax’ ¥__..). A procedure will be outlined below.

max

R e e e ey e e e




'Ihveft'-i'ng)eQS . (4.6)

TR B
n = xl( )
1 - ¥x
(4.7)
En + W(ng = XE,)
£ = - = €,
1 - ¥x
and furnishes the actual field coordinates.
The transformed description in (z, X, ¥) space, where %(3) and (i) are
the normalized parameters
Bap b o
. x - x(1)
X =
x(,) - x(1)
(4.8)
e v - (1)
Yy = :
w(i) - w(1)
for each of the two grid di_re.ctions, follows from eqs. (3.7) on
application of |
R X
T 3z
3 X 3 y? d
e = . e + Y (4'9)
am  nlx(3,) - x(1) ¥ (g - ggd(wi) - p(1)) oy
9 )(2 3 1/} 9
—_— = —— pa—
3 n(x(3y) - x(1) ox (& - Eghlwli) - p(1))
v
i
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There results
E* + F* +G* + H* = 0 (4.10)
z X v

with the revised state vectors b

E* = E
F X(F + XG)
n(x(3,) - x(1)
(TR T (4']])
or = — U (¥F + &) '
(e - gp)lu(ip) - w(1))
o wIx(G) - x(M)T P+ xDu(i) - w(1)]e* ¥ XG
H* = f + = o
1 - Yy g'gR n f
An analgous grid system for the upper (expansion) side of the
geometry is shown %n Figurei7'5nd consists of
n- ﬂu
DA =
L
(4.12)
we = & - ntangg
Or, on inverting
x(&, - v.)
n o= u e
1+ XtanBB
; (4.13)
g )(Eu tanBB + we !

14 Xtangg

!
|




Again normalizing the grid level as in eqs. (4.8), the transformation to

(zs X» @e) space makes use of

o X )

M nldag) - X)) B wlig) - vu(1) 3%,

3 . X 3

% nx,) - x(1) 3%

and results in

z X
with
EX = E
x (F + xG)
-3

Velip) = (1) 3

nlx () - x(1))

G - %anBB F

{ H;:H_[

Velin) = ¥,(1)

(W +2 xtanBB)G + tanBy F
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Grid Parameters

The grid systems permit adjustment of the i and/or j locii so that
some mesh line(s) approximately parallel any expected shock discontinuities
for M_ < MD. Near on-design a shock lying along & = ET corresponds to assuming
ER = gT, for example. Off-design attached shocks correspond to "R > nr
with ¢ = constant matching either the oblique shock trace near the edge, or
linearly approximating the entire shock trace over the entire 0 < n < 1
interval.

For detached shocksfrom the side edge, choices for R and ny can be
made such that the jN grid line approximates Phq normql to the surfaces,
and simultaneously the ¢ = 0 mesh line approgimates the central (n << 1)

shock location. From eq. (4.6)

" i (Jy - 1.5) A
x = = = = J - 3 X
§ fu” (EH-- tan B_) .
nM B
(4.17)
T 1 |
iy o SRRt = (3, -1.5) & :
- u
u N (ﬁ— - tan Bp)
N
Therefore for a given number of grid lines outboard of the edge, or ;
E
equivalently, if given
J_=-1.5
o (4.18)

Jon jn - 1.5

s

= B A s N, Lo Rl 4 U8 » ¢ .- e et
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the location Eu is

dpn = 1
g, K—my) (4.19)
dmn ?ﬂ;

yre !
!

Conversely, a given ( & /&,) implies some j__, which necessarily should be
u’ R mn

restricted to levels leading to integer values of

§, = WS+ 0 - L5 1 (4.20)

2 i '
¢ & LE FE )

which poses no difficulty. Essentially, eq. (4.19) shows that

n
- g 2 31

mn 2 Ry implies = > £ > £ ( = &y) (4.21)

and the & such that jN is normal to the upper (expansion) surface
extended (i.e. TM) fixes x(jN) = tanBB, and from eq. (4.17) is then
i

~ "N
(Eu)N i, sinBB cosBB (4.22)

In that case also

sin R, cos
X(dy) * ;——B‘i—i"’ (4.23)
N _ sin%s
Ty B

The compression side grid extends to the intersection of the (i,j) = (l,jm)

meshlines or to (point P, Figure 6) z

s
)
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a2.

tand
(Eu a1 )XM
n =
max 1+ 9" x (4.24)

The j line procedure may be summarized as follows:
a) Assume N in order to fix the mesh noint location outboard of
the airfoil edge, and from eq. (4.52) the approximate (gu)N
for a normal meshline follows.
b) Assume gR/gT to fix nR from eq. (3.30), and also nM(= 5M/tan88):
c) Assume jn and fix integer value of jm from eqs. (4.19), (4.20).

The i 1ine procedure is straightforward from eqs. (4.6) and (4.12).

: !
o LAY o

g ;- Bl
i) = (—Dtﬁt;ﬂ;ii—— ) +u(1) = (i-1)ay + (1)

(4.25)
beli) =& = (i-1)ay, + v, (1)

in which y(1) = -g' and y,(1) = 0. The choice of a maximum |£r1=0|
based on expected shock strengths (see, e.g., eq. (2.7)) then fixes

both y(im), we(im) levels.

Boundary Conditions

Boundary conditions are of four kinds: surface, symmetry, overlapping
computational grids and grid external field edges. The latter were main-
tained at free stream property levels (along the im and jm boundaries),
excepting for certain attached shock cases that took advantage of the
known uniform regions of compression near the edges to reduce consideration

to solely the lower region. i
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The surface boundary condition from eq. (3.31) is

; (%) - tané
(&, = e (4.26)
w '
g
j !
for the compression surface with gi = (tanBD - tan§) / s*. The same
form applies for the expansion side with § taken equal to zero; i.e.
w =
(v)w = tanBB (4.27)

In practice such boundary conditions were enforced after each integration
step as the calculation proceeds and eq. (4.26) indicates some freedom in
choosing u, v, or w as the basis for such adjustments. Since q? = u?+vZ+w?
(and omitting ( )w for convenience), eq. (4.26) implies quadratic equations

for v and w:

aw? - 2bw + ¢ + (g% - u?)(1 - g'2) =0
ey % o (4.28)
av2 + 2bg'v + ¢ =0
i Here
a = 1+g'
b = u tand (4.29)
¢ = u?(1 + tan%s) -q2
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and therefore

W {_;.} utans * {?'}v(v2+w1Y(Tig'z)-(utan5)7

= (4.30)
] + gI2
v
2 1
The contents of the radical dictate that
2
g2 -u? =vZ+w =Kk {utans)® [k >1] (4.31)
1 ] + glz & -
. kg by
where the k1 = 1 limit corresponds to a minimum (q2 - u?) level for
which the specific (v,w) pair from eq. (4.30) are
- u tané
Ymin = T¥gz >0
(4.32)
Vmin =~ 9"¥min <,0
Thus B
W 1 g'
=W e ST (4.33)
1 1
v -g 1 3

and the radical sign choices for a given u are clarified in Figure 8;

i.e. a positive sign results inw > w and v > v

min mi
if w > utan §. Eqs. (4.26) and (4.32a) show that the locus of min points

n® but v > 0 only

as u varies is given by

g""’min = “Vmin

T eaa

T e 1 S 1 I A 105435 W
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as is also clear from the slopes of the constant u line and its normal.

Point C in Figure 8, i.e. (v,w) = (0, utand), is the reentrant corner

e

condition as well as the entire compression surface condition if on-design.
For off-design eq. (4.26) implies an interval 0 < |v| < [vel along the ACB
line for some constant u. An initial guess for the field does not
necessarily correspond to the correct interval, although in the attached
shock case the exact interval 1imits are predetermined. However, in either
case the algorithm eqs. (4.2), (4.3) does not ensure consistent state
properties for eq. (4.26) as the calculation proceeds.

Thus the E* vector as given by a corrector algorithm, eq. (4.3), may

result in a (v,w) pair that does not lie on the u = constant locus (Figure 8),
and in féct may lie within the interior of the k1 = 1 circle. That the
possibility is of importance may be realized by noting that g' can be small,
so that the points min and C are in fact close together. Continuation of the
calculation requires distinct procedures for the kl 21 situations. If

k1> 1 the imposed boundary condition after each corrector step is given

by eq. (4.33); if k;< 1 the éffective kl may be ammended to that satisfying
eq. (4.33) for v, namely .

V-V,
_;I___“‘_"“_. )2 (4.35)
. min

and w then follows from eq. (4.33). This procedure effectively increases

w without constraint on the sign of v.

Alternatively, with v as the basis after each corrector step




- 2vg'tans + ¥ (2vg'tans)® - (1+tan®8)[(1+g'2?)v?-q?]

1 + tan?s
(4.36)

u tans + vg'

=
"

for the compression surface, and _

. =”az g co:BB ¥
(4.37)

w = v tanBB

PR SR E |

for the expansion side. Both eqs. (4.33) and (4.36), (4.37) were used
successfully, the former for the attached shock and the latter for the
detached shock applications.

The symmetry plane (n = 0) condition imposes a reflection of the

J = 1 mesh line properties properly interpolated to take acccunt of the
diverging grid in the (n,&) plane. With & and y from eqs. (4.7) and
(4.25), and x(j) = ¥ Ax/2 for j = 1.2 the interpolation follows from

(Figure 9) the weighting
8 - HPEN 20 if y(i) S0 (4.38)

E.g.,

p(1,1) = p(3,2) - [p(i +1,2) - pli,2)] £2 (4.39)
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Similarly, p, u, w symmetry and v asymmetry may be imposed at all (i,1)

points. For the expansion side (& < 0)

AE E(1.2) ~ E{1 + 1,2) (4.40)

and

p(i,2) - [p(i,2) - p(i +1,2)] 92 (4.41)

p(i,1)

Outboard of the tip (n > 1) either symmetry or overlapping grid
interpolations were imposed. For attached shock conditions TM (Figure 6) :
may be considered to be a symmetry plane and fhé égfd‘values for p, p, U, 1
and (v? + w?) were upgraded after each sweep of the entire mesh region

so as to impose that symmetry. For detached shock conditions the

overlapping grid results were used to upgrade the boundary conditions

along either TM or TP (for the upper or lower region respectively) based
upon the results of a set number of sweeps for the prior integration
region.

In the symmetry‘case, %or each jn < J f_jm-l the y corresponding

to each x(j) along TM is

(g,-gg) xtangy - &p
ng *+ x(ngtang - €,)

(4.42)

which fixes the maximum (integer) i for a given j in region TPM on

use of eq. (4.25). Since the normal to TM has the slope (- cotBB)

the symmetrically opposite point corresponds to




Ei tanBB + N,

n
ey 1+ tanBB tan(ZBB - Bi)

)

2 i

t =
opp nopp an(zeB B

and B; = tan'l(gi/ni). Thus

-x(3j
p(i,j) = p(i+1,3) + [p(i+1,3)-p(i+1,j-1)] XOAEXE x(3)

P(i+l) -y
+ [p(i+1,3)-p(i+2,3)] __1_)____°Rp
Ay

» W

with similar relations for p(i,j), u(i,j), and v,

PP “opp’

s e, 3 .
v(i,j) vopp cosZ% wopps1n 2%

w(i,j) = v sinZBB -w

opp cosZBB

opp

2 +ws= 4 e . (4. .
such that v W vopp wopp The levels from eqs. (4.45),(4.46)

are then associated with all i equal or less than that from (4.42) to

complete the grid specification throughout TPM.

AR TN A, O R
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The procedure for the overlapping grid case is similar to the above.
Partially converged results for the lower region, e.g., provide conditions
along TM as the tip condition for the upper region integration. Eq. (4.42)
defines both ETM for a given jn‘g 3 < jm-], and with eq. (4.25) the

adjacent i values (i+, i”) bracketing the point on the TM locus. Then

e i < g P (4.47)

™ i i i Ei+ = &4-
and similarly for the other state properties. On completion of partial
convergence for the upper region, the same proceggre.e§tablishes values
along TP as the subsequent Tower region conditfon. In that case the we
corresponding to each x(j) point on TP is

tans(1 + x[tangg - € J)
‘pe — (4.48)

s*(1 + g'x]

Decoding

The flow variables must be deceded from E* or E; results in order
to reconstruct F*, G*, H* after each predictior and corrector step. From

eqs. (3.2) and (3.4)

¥ B2 o _ 2 _ F2 _ 2
E2 + E2 4k (1 k)(El E3 E“)

2(1-K)E,
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E'c
N"E—
1
=5
oy
0 2 Ea 2 Eu 2
s (1-u? - (i?_ )2 - (f?-) )

The sign choice for the radical follows from consideration of small v
and w, or that u remains supersonic. Once again, however, the finite
difference procedure does not ensure consistgqt'Ei ya[ues after each

Az step. If R is the contents of the radical in éq. (4.49) there are

two implied physical constraints:

‘?(]-k)E1 o

j

The first ensures real u and the second that u < q < 1.0.

I.e.,
i
Ey 12
E. -l [E—‘ = (=00 - (92-u)])
'E— Umm
i E 3
_<_ ?2_ = 1 - k(qZ - u2)
\ 1)
max

is the permissible EZ/EIrange for the calculation to continue.

i

i

s
1

(4.49)
(continued)

(4.50)

(4.51)




These bounds are of special importance for undershoot/overshoot behavior

near shock locations, for near sonic speed, and at high Mach numbers.

In the present computations both the R < 0 and p < 0 possibilities were
monitored and corrected for by modification of E2 to constrain the system
to physically meaningful results during the asymbtofic approach. Such
modifications proved necessary when starting with arbitrary initial
conditions but the need does decay (i.e. in terms of number of necessary
modifications) as the integration proceeds.

Figure 10 illustrates the limits of eqs. (4.51) and also includes

the EZ/E1 variation with M for the special case of v.='w = 0; i.e. in
the latter case

! s Y (v=w=0) (4.52)

E1 [l%l M2 (~|+L‘é_]_M2)]]/2

;.
and varies between'(yz-l)l/z/y = 0.6999 and unity for 1 <M < o, In
general the minimum condition corresponds to
2
o > =) (4.53)
- 1-2k i

and the v = w = 0 special case implies u = ¥V k/(1-K) or sonic speed,

consistent with eq. (4.52).

Solution Procedures

The integration of the field proceeds from assumed initial conditions

at the arbitrary axial plane ¢ = 1. Free stream conditions suffice but an i
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appreciable reduction in computation time results with either imposed

shock layer flow variables which are based on psuedo on-design conditions
or the continuation from a previously determined solution as the conditions
closely approximating those next of interest. An attached shock evaluation
would therefore typically follow by taking a AM_ increment from an already
converged solution for some M _, starting origihally with the on-design
case. At each ¢ the predictor and corrector computations from eqs. (4,2),
(4.3) imply decoded values applicable at ¢ + Az, boundary conditions are
then enforced, and the steps are repeated until uniform conical conditions

are achieved at some downstream z.

Eg By

For known attached shock conditions (nR,gR) was placed at the side
edge and-gu moved to ® such that the j mesh lines formed a set parallel
to then= 0 centerline.In such cases only the lower (compression) region
need be considered and the outermost grid boundary (jm) was displaced
inboard so as to lie within the uniform flow region between the tip and
the post shock Mach cone from the apex (Figure 11). This arrangement
provides an i grid line which parallels the shock in the uniform region
and places the singular ( )é origin external to the computational domain.
However, free stream conditions are no longer appropriate along jm and were
replaced in such cases with the simple floating uniformity condition
p(i,jm) = p(i,jm-l), etc. The tip region properties therefore were self
adjusting to a final sweptback edge compression level.

For detached shock conditions, as well as when check computations
of the attached shock case were considered the alternating grid procedure
was employed with partial convergence of the respective upper and lower

regions carried out successively. Initial conditions consisted of finite
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shock layer approximations extended over the entire lower (compression)
region and the tip portion of the upper region. This is of some importance

for small § since the overlap region TMP in that case may itself be small.




T

5.  NUMERICAL RESULTS

Computations were carried out for two basic caret sections with
Bp = 35° and § = 5.746° and 22.181° (Table 3). The geometries correspond
to on-design flows at MD = 2 and 4 respectively and in each case both
s* = 1 and 2 were considered. For the My = 4 geometry both the attached
and detached (alternating) algorithms were used for some of the attached
side edge cases as a consistency check on the procedures.

A measure of the shock capturing behavior is shown in Figures 12 a,b
for several M, < M, at each of the MD levels. The pressure distribution
through the shock layer adjacent to the symmetry plane (n = 0.01) for
attached side edge cases exhibits fairly unifd#m;ééédiéions both within
and external to the shock layer. Overshoot and undershoot was always
present upstream and downstream of the shock location with a numerical i
adjustment to the pressure jump occurring over 3 to 4 mesh widths. The i
major shock jump was over two mesh widths as indicated by the dashed lines. !

Lower (compression) surface pressure coefficient distributions appear

in Figures 13 a, b,.c. Figures 13 a and c¢ contain only attached side

e i s i

edge cases; Figure 13 b inc]ﬁdes those for side edge detachment. The
attached algorithm imposed the uniformity condition at n > ng (Figure 11)
and led to converged solutions in good agreement with the theoretical
pressure levels (indicated by horizontal lines in Figures 13) for the
uniform edge regions, and with break points in the distribution quite con-
sistent with the expected Ng locations. The detached shock cases

(M, =1.3, 1.4 in Figure 13 b) achieved near edge pressures comparable

with post shock levels for a symmetric shock lying at 1 < n < 1.06.
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E.g., for the M = 1.3 case 0.38 < Cp < 0.41 is implied behind such
shocks when 1lying outboard of the side edge.

Upper (expansion) surface pressures for detached cases indicated
free stream levels over the entire surface span. The expansion about
the side edge rapidly weakens the nearby shock and resulted in a pressure
field for n < 1 within approximately one percent of the free stream
pressure. Nevertheless, the upper region is of some importance as a
boundary in the detached region which allows for the rapid changes.

Shock.jump locii in the crossplane are shown in Figures 14 a, b, c,
the geoméfry béing inverted. A1l points were obtained as midpoint
estimates of the greatest pressure jump 1ocat{on élong each grid line
(e.g., as in Figure 12). Solid lines in Figures 14 a, ¢ are the theo-
retical attached shock traces for n > Ng (Figure 11). The interpolated
points are in good agreement with such directions and maintain the same
direction for an additional interval n < ng in which the edge conditions
persist away from the surface and exterior to the Ng Mach cone.

The dashed 1iﬁe in Fig@res 14 a, c¢ indicates the limiting shock
directions for post shock supersonic flow normal to the edge. For these
geometries (Table 3) the condition corresponds to M_ = 1.428 and 2.326
for the (6, BD) pair examples. The M_ = 1.4 case in Figure 14 b represents
a condition very close to the classical detachment level (Mw = 1.41);
M, = 1.3 is a fully detached case from the side edge and is approaching
close to the apex detachment 1imit of M_ = 1.26.

In both Figures 14 a and ¢ the point scatter increases appreciably

as the shock traces depart from the computational grid directions,

i
§




i.e. for n » 0 regions and for increasing IMD - M_[, with an indicated
waviness on the order of the grid scale. For the detached M =13
case the grid scale was approximately halved to confirm the effect for
a widely bulging shock.

The M_ = 1.4 case closely adhered to the limiting shock direction
for a supersonic side edge with virtually no discernible pressure jump
in the field on the expansion side. For M_ = 1.3 the detachment is
quite clear and an appreciably weakened shock is visible on the expansion 1
side. Two Mach cone traces are shown for the upper (expansion) surface
in Figure 14 b. One is the apex Mach cone for Mw.fﬁ]'? which extends to
about n = 0.6. The other is the free stream M;ch tbne disturbance

envelope limit from the side edge which is tangent to the Mach cone

centered on the apex. The latter 1imit makes clear the rapid weakening

of the shock in the close vicinity of the edge and the reasonably ]
parallel shock trace extending into the upper field. This appears to
be consistent with the virtually undisturbed surface pressures found
for that surface as mentioned above. The detachment scale itself
remains small (n < 1.05) desbite the close approach to complete detach-
ment at M_ = 1.26.
Figures 15, 16, and 17 summarize the overall force coefficients for

1ift and drag based on

2| ;e A
C = FAg),dn - J (39 @
L YM«,Z . Pwl . Ps €
(5.1)
- 2tané P base
Co - I (pw)E dn D
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with (pbase/pm) taken to be zero. The base pressure level can make a
substantial contribution to a drag reduction, of course, depending on the
Mach number level. For example, on-design the extremes of (pb/pm) for
MD = (2,4) imply the range Cp = (0.0492, 0.2157) to (0.0133, .1793).
For M_= 2, CL/CD increases from 2.68 to 9.94, and for M_ = 4 from
2.04 to 2.45 for (pb/pm) in the range 0. to 1.

Comparison is made between results from the attached and detached
algorithms in Figures 15 and 16 for s* = 2 and M_ = 1.7 and 1.5. The
CL disagreement for the latter may be attributed to edge effects on the
upper surface under near detachment conditions, g§,gyigent in the CD
unaffected agreement for the same cases. Forwrejatfve1y smaller ng
(M = 1.7) the alternating procedure proved to be very consistent.

The coefficient variation in the detachment range of M_ shows no
abrupt 1ift losses due to edge effects. One computation was purposely
carried out beyond the apex detachment 1imit as a consistency check;
for M_ = 1.2 a sharp decrease in CL was indicated (approximately 20%)
on starting from the = 1{3 solution and completing several hundred
Az steps. The 1ift to drag ratio decreases ;moéfhly from 2.68 to 2.48
for attached shocks at 2.0 g_Mm:3 1.50 and averages 2.47 + 1% in the
detached M_ interval. :

The detachment evaluations depend critically on an appropriate
initial condition in the overlapping mesh regions PTM, Figure 6. For
thin geometries, such as the § = 5.75°, MD = 2 example cited here, it
is essential that initial conditions along the boundaries PT and TM be

representative of a shock layer, and that the overlap be sufficient to
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allow description of the gradients in that region. For P - M, i.e. an

extremely thin geometry, the alternating algorithm would effectively
require a match of derivatives along the common interface. In this

sense the calculations for 8§ ~5° are a good test of the capabilities of

overlapping mesh regions chosen so as to conform to specific surfaces
and shock layer segments. It is to be expected that "“thick" caret
solutions, e.g., would converge somewhat faster and be less sensitive
to initial field choices. Virtually all of the present results were

obtained, however, by stepping M_ to a new level and proceeding from

the previous field. s E
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6. CONCLUSION

The study has applied shock capturing finite difference procedures
to waverider configurations of the caret type. It is fairly evident that
a grid definition for crossplane sections with cornersand concave regions
poses special constraints. For off-design Mach numbers such that shocks
remain attached at side edges it has been shown that computational grids
may be chosen to conform to crossplane surface and symmetry planes while
simultaneously providing approximate but adequate matching with antici-
pated shock traces. For the Mach number interval corresponding to edge

detached to apex detached flow fields the interacting compression and

t
te [

expansion portions of the field may be eva]uaféd‘sy‘similar specialized
grid regions of relatively small overlap.

The suggested alternating algorithm requires sequencing the
separate integrations for each such region, with interpolative adjustment
of the boundary conditions in the edge region as the asymptotic integration
proceeds. The evaluations demonstrate the utility of such an alternating
algorithm for re]ative]y{small'regions of overlap that are implied by thin
configurations. v '

While no attempt was made to refine grid scales so as to define the
flow details in the detached near edge region, the overall force coefficient
results make clear that sharp discontinuities in behavior are not present

in the transition from attached to detached side edge conditions.

i
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APPENDIX 1
COMPUTER CODE

A code glossary, flow chart and listing are given below for the
detached shock field algorithm. Computations were carried out on the
M.I.T. Multiplexed Information Computing Service (MULTICS) system
which makes use of a Honeywell 6180 computer in a time sharing mode.
Computer time per grid point was 2.34 x 10" *seconds and solution time
varied from 10 minutes for nearly on-design to two hours for a fully

detached case.

Specific grid constants are summarized in Table 4 for the cases
considered. Stable solutions were completed with bet = 0.05.

Numerical instabilities were evident for bet > 0.10.

TN N L Al S GO M sSSP




Code Glossary

a
ajmn
ak
akl
ak4
al
am
amd

be

bet

chi

d

dz

dcc

dcp

del

del chib
del psib
dxir

e

et

etb

etl

etr

ga

hh
im, iml
iii
jm» jm1

Tt <X oM 3

(1 + tan?6)
(jm-1-5)/(jn-1-5)
(v=1)/2y

Ll

initial condition shock layer weighting factor
AT/ BX |

Mco

M_ on design

vh tang

Bp )

A/ MY

X be vbA 1
(1+h?)v2-q? e
dg

&y

Ay

S

x(3) = x(1)

W) - v()

s/

o .

n ‘ i

n along Bg locus

i

R

(tanBD - tang)/s*
i

m

1m—1

J




n
jnl
Jij
ni

pi
PP
psi
pl
p2

qq

rr
rl

tbb
tbe
tbbi

uu

xi

xib
xir
xiu
xid

X (3 u g : 0
M AR A b s b

42

In

iy

- R
cycle count
p

™

(p/p,),,

(]

P/ Py

p/p,,

q

q2

p

(0/pg)e

e/ o,

s*
tanBB
tanBD
tan(ZBB - By
u

(q/gmax)°°

_—

W

g

£ along BB locus

)

ER! gM

gu

Eim for n =
4

!
o

By i

ek
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FLOW CHART

|Read data file

L

[Print case constants i

[Request initial condition basis | P A,

Call initial condition routine and
print selected field values

[Request region of integration B
i
[Call integration Toop e
(R s 1
boundary conditions ~—

(E, F, & A)"

predictor for E

~

decode and (E, G, ﬁ)

_ =n+
corrector for " 1

decode S e

Print cycle count, decoding count,
and axial station

Repeat cycle]

|
(Print selected field values

.

Modify boundary condition
for alternate region

Terminate

{Request proceed option

Request terminate option
(print entire field, store, stop)

:

[Stop |




agei1ecHiel L did

dimension pP(42442) 40 (42462) 4ul(42+42) 4v(L2942) 9w (42,42)
dimensicn et (42442)yx1(42442)9ychil42)4ypsilL2)
dimensicn pl (“21‘02)1("(‘0?"02) sul (ME,LOZ)'Vl (QZQAZ)QH'(“Zp“Z)
dimension eti(&24,s42) yxilluly42)9chil (42)ypsil (42)
dimension e(lo2v¢+2,’+) 17‘“2’1429‘0)19("{2"‘214)1“‘“2"‘2'4’
dimension el(&4244244)
common /Cl/ pyTeUgVyn
common /c2/ gajyamgybeypisamd
common /c3/ hhysdccsdcpytdesdccl,dcpl
common /c&/ imyJmyimiy]ml
common /c5/ ak9,akk
common /cb/ J)nsaexiuytbbyetr
common /c7/ LLl,]]].LLLI.])JI,lni.lt,jtl
common /c8/ xiy etyxilgetl
common /c3/ )n
common /cl1d/ Xirschispsischilypsil
common<%/clil/ ak
common /c13/ s
common /cli&/ elseysfyegsh
common /cl15/ dzs3l.bat,z
common /clib/ delchibs,deslipsiby,delchil
common /cl7/ negr,nejp :
common /c18/ plartyulsviywl na ChAf Y 8
common /c¢i19/ nit
common /c20/ Ja,}ib
namelist /7nam/ gasamsSsbesdelsbetyfnsetal,
akKliy ak2snisamdyak3snityauxy

rewind 22

constants, coordinates
read (22.nam)

ak = (ga-=1.)7(2.%g3)

pi = 4.fatan(l.)

tde = tenldel/180.%pi)

a = 1 .+tde¥¥*?2

tbe = ten(pe/180.%pi)

tbb = tte/s ;

hh = (tbe—?de)/s

xir = akili*tbo

etr = (xir - (tde/s))/hh

xiu = 2%etal/(sin{2.%atan(tbb)))

ajmn = ((xiu/etal)=-tob)/((xiu/akli)l-tbb)
ak9 = 1.5 + (Jn=1.5)%3]mn

Im = ifix(ak9)

im = I

jmi = In

iml = inm

ajmn = (Jm=1.5)/()n=-1.5)

xiu = xir¥*(ajmn=1.)/(a)jmn-(akl/etal))
xicl = ak2*xir

dcc = 1/ ({xiu/aki-tbb)¥()m=-1.5))

dcp = (xicl=(tde/s))/etr/(im=1.)

dccl = dcc

dcpl = ak3/(iml=-14)

1110 = jt - 1 .
iiit = im0 - 1 i
jnl = |r ¢+ 1 ;
13y = jm=3 !

ili = jm=-1




10
11

204
205

62
61

208

23

207

21

ol b ol o o o

Jia = e~}
dz = bet/
al = da2*)
print 10C,
de 11 i =
psi(i) =
do 10 ) =
chil(})) =
ak9g =
et(l,}) =
XI(IQ’) =
continue

do 204 ) =
ak9 = et(1
Bl =)
if (ak9e.9te.
continue

]t = )11
print 146,
print 120
delchib =
delpsib =
do 61 il =
psil{il) =
do 62 I =
chil(jt) =
ak9 =

etl(iiy)l)
xil(il,3)=
continue
delchil =
call prcoor
i
print 102
read 108,1
call ic(l)
i
z 0.
kc 0
print 147
read 108,41
do 21 k2 =
kc kc +
)t
Jif -
kil =
call integr
confinue
ja = 2
jb =1
call

continue
print 120

45

iii

i)
amedelosbey(180s/pi)¥atan(tbb) s,
etaljaklsetrexiusxicly
ak2ydCcCyUCpP sk,

ak3sdccl sdcply

Jneimyim,

NITQ]M|’iM|'

alybety,amd

191"\

(i-1« )¥dcp - hh

le)m e
()=1.95)¥dcc

1e = chi(])*psi(i)
chil])¥(xiu=xir=-etr¥*psili))/ak9
(xir + (etr=xiu*cni()))¥psi(i))/aks

104111
,]) - 1e

0.) go fto 205

- 1 te

]t

chi(1)
psi(l)

chi()jm) -
psi(im) -
1,iml
(ii-1.)*dcpl
1eJml
(J1=1.5) ®*dccl
1e + chil()JI1)*tbb
cnil (JI1)*(xiu-psil(ii)) /3k9
{chill)J1)¥xiu¥tbb + psil(il))/ak3

chil{)mi) = chilt1)
4 :
nitial

conditions: =0+ discedes,ym

ntegration

1yni
1

1
19”1?
ate(t)

integratel(l)




24

26

25

49

51
50

100

102
105
106
107
108
109
120
135
124
146
147

(2o B o B o]

0

£0 90 90 po pn po po

2% REevi ¥

prini

print 124, negrynegp
negr = ( '
negp = C

z = 2 + dz¥ni

not converged: -0+ mancycysstonsselmod; =0+ prfinsstopywrite
rewind 9
write (9) p.r.u.v.w.ol,rl,ul.vl.wl
print 106s2
call pr
print 107
read 108411
if (11) 23425426
call mod(1) o E
go to 208
print 109
read 108,411
if (11) 49,50,51

print 135

call prtin

continue

stop

format (“m ="y f6e2y" delta="yf8ekys*" Dbetad=",f8.4s" betab=",
f8¢109" b¥ :"Qf501'/9“ef6|=“,-‘6‘2"“ tetam =“of80‘69

b etar =“|t8o10’“ Xiu ="1f8¢[+0.“ xict =“yf8.l§’/,
“akZ ="y 16.29" delchi="yf3.4," delpsi=",f8.4s" ak4 =",18.4,4/,
"*ak3 :"qff,\oZ'“ delCh"—‘"'fdoltou delpsl-‘-".fS.u,/.
"In =Ysibe4xeIm ="y ibkeo X" im ="yi44/,
“nit =".il+,l+x."]ml =",Un6x.“ iml =",l‘!g/'
“al =.fH6e29" Det ="3f8.49" amd ="y3f8el /)
format (“fix {.cae")
format (Miters="4i7,i7)
format (“In x =*"4f8.2)
format (“proceed option")
format (i2)
format (“terminate option®) .
format (x) ! g
format (/4/457) ;
format (“negsr =",i642xy'"negp ="41i6)
format (Jt ="41i7)
format ("fix region') {

P SpO————

end

subroutire ic(l)
initial conditions
dimensicn D(‘GZ"GZ)QP(‘OZvQZ) 'u(hz 0142) .V(“ZQ‘#Z) 1h’(l-02'102’
dimension pl(42442) 301 (42442) 3ul (42442) yv1(42442) 9wl (42442)
common /cCl/ pPefeUyVyeW
common /c2/ gasamyebe,piysamd :
common /c3/ hhydccydcpytdeysdcclsdcpl
common /c4/ imy)meimiy)ml
common /c5/ ak9,akb L,
common /c7/ Llile))yeillle)))iginie)ty)tl :
common /c9/ In |
common /c18/ plyrlsyulyviynwl




15

75

17

206

rr

PP
uy

= sagrt ((ga=-l.)*am¥*am/2./(1.+(ga-1.)*am*am/2.))

i

(e SITE icvels
(Let(ga-led¥an¥am/de)¥*¥(1la/(1e=qga))
rr¥*33

It (1) 12413414
read disc field

rewind 9
read (9) pyrsugyvenyplerlsulsviant

call pr
return

i9

i10

do 15 i
do 15 |
p(l,y))
P(lv])
uliy))
V(ig]’
wliye))
do 75 il
do 75 |1
pl(ily)l
rilily)!
ul (ilye)l
viCilye)
wl(ilgejt
ak9

p1

ri

qa

ul

vi

wl

do 17 i
do 17 )
pliy})
r(i.])
U(lo])
viiy))
Wliyg))
do 206 i
do 200
pl(isg)
rd(iys))
ufl (iye})
v (iy))
wi(ie))
call pr
return

print 10

)
)
)
)
)

3

TR TR TR I T T I (L

O T T L LI L L T T (O YO T T 1

“on design® jece

"o

L L L L A B 1

n

iIfix (1.+hn/dcp)
jn ¢ 3

1yim

1,]m

Pp
rr
uu

Ue

Oe

l1eiml

1,fimi

oo

rr

uu TR
Oe S
Oe

o nuu

(am¥*sin((be/180.¥pi)+(asin(l./am)-asin(l./and)) ®FakL))*¥2

pp¥(let2.¥ga* (ak9=14)/(yatisa))
Pr"(ga*io)43K9/(ak‘3*(ga‘1o)"20)
sqrt(i.-pl/r1)

q¥sqrt{l./(1.+tge¥%2))

0.

uil®tde

14,19

1,i10

pl

rli

ul

vi

Wil

1,8
Jt1,110
(pptpl)/2.
(re+ri)/2.
sart((l1e=plliyg))/rlliqs)))/ (Lettde®¥2))
Oe

ulliy))*tde

ew m Infinity

read 104gyam

rewind 9

read (9) pyrsUsVeneplortyulyviewl

re
Pp
uu
do 19 |
plimy))

(L.t (ga-1.)*am*am/2.)*¥*%*(1L./(1e=-ga))
rr¥¥ga '

sart((ga=-1.)%am*am/2./ (1. +(ga=~1e) *am*am/24))

1e)m
PP

!




19

76

20

77

103
104

88

rdim,))
ulim,))
do 76
Dl(im|'
riCimi,
ul(lml.
go 20 i
D(io]ﬂ)
rlisy)m)
U‘Iy]M)
do 77 i
pl(ily)
rt(ily]}
ultity]
calil pr
return

format
format

end

subrout
call bc
call ee

call fg
call pr

e e N o

= frr
= u
l =
1N
I
IR R

o) ml
PO
rr
uu
1.im

PP

re

uu
1 = 1,1ml

mil) = pp

mi) rr %

ml) uu

HwoHonnu
e c

(llmz ‘l)
(15.3)

ire integrate(l)

N
(1)
hel)
d

call decodel(l)
caft fagb(l)
call cer

call decode(l)

return
end

subrout

dimensi
dimensi
dimensi
dimensi
common
common
common
common
common
common
common
common
common
it (leg

i =1

do 79 )
aq = 1.
U‘(i'l)
Nl(i'])

do 80 i

ine bcll)

boundary conditions
cn D(“Z,“Z)'P(“ZQQZ)vU(QZQQ2’vV(“Z,*Z"W(QZQQZ'
on Pl (42:42) 9 1 (L42442) yul (42442) gvl(G24642) 4wl (42442)
on etl (62442 4xil(42442) gchil (42)ypsil(42)
on et (42442) 9 xi(L42y42) schilt2) 4psilll)
/cl/ PeTeUgVye W
/c3/ hhydccydcpy tdeydcclydepl
/c4/ img)meimiy)mi
/c6/ JineasxXiuytbbyetr
€7/ Qiidio)))odiile}))lelniy)te)tl
/c8/ xi,ef,xil,etl
/c3/ In
/c10/ xirychispsischilypsil
/¢c18/ plarlyul gvigenl
t.0) go to 78

flat surface

2411t .
pl(ig))/rtCiy)) i
sart(qa=(vi (is))/cos(atan(tob)))**2)
tob*vi (1))

enterline
1,1ii1

e nH




31

38

37

0

gxir = (xil (ll;)‘XL‘ (Lil))/(}ll ‘i\i)"xil {i+1+21)
Pllisl) = pllios2)+(pt(i®*l1,2)-0I(iy2))*¥dxir
Frl(ied) = rlliy2)¢(rl(i+14,2)-r1{iy2))*axir
Ul (isl) = ullis2)+(ul (i+142)=ulliy2))*dxir
VE(igl) ==vl(ie2)=(vi(i*+142)-vi(iye2))*dxir
WiCiel) = Wi lioe2)t (il (i+142)-wl(iqg2))*dxir
return

compression surface
i = 1
do 30 §J = 2.1]¢t
qQqQ = 1le - p(i.])/r(l.])
b = hh¥tde*v(i.))
d = (1.¢hh*¥2) ¥ (v(iy])*¥*¥2) - Qg
uli,)) = (=btsart(pb¥¥2-a¥*d))/a
wilis)) = tde¥*ulis])thh¥v(is})

centerline
do 31 i =1,iii

axir = (xilig2)=xilig1))/(xi{i+1,2)-xilis2))
plivl) = plie2) = (plit4l42)=-pliy2))*dxir
r{i,l) = r(ig2) = (c(i+l42)=rlie2))*axir
Uliel) = uliy2) = (Uli*+l142)=ulis2))*dxir
viil.l) z=yv(ie2) + (v(i+142)-vli,L2))*dxir
wli.l) = wlig2) = (W(i+142)=wl(iqs2))*dxir
return 7

end

subroutine decodel(l)

dimension D(‘OZQLOZ)oP(‘OZ,“Z),U(QZ’QZ)1\/(‘02"-02,'N(LOZQL#Z)
dimensicn plu2.:42) 30l (424421 90l (024L2)Y4vl(42442) 40wl (42,442)
dimension e(hZ.loZ,!-o)of(hZ.hZ'M.g(hZ-kZ,k).h(QZ,«Z'M
dimensicn el(42442,4)

common /Cl/ PyreUsVeW

common /c7/ iiig)))eidile)))leiniy)te)tl

common /clil/ ak

common /cl4/ elseqsfsgyh

common /cl7/ negryneJp

common /c18/ plesrlsulyviynwl

common /c20/ Jasjb

akii = 1. = ak

do 36 I = 1,iii

do 36 1 = Jasl))

it (legt.0) go to 92

vi(ig)) = el liyg)oe3)/21(iy)al)

N'("l) = el(lylgh)/EI(l'}si)

ak9 = el(ig)e2)/721(iy)41)

aki0 = Ge¥akli¥ak¥ (le=vi(iyg))¥¥2=-uwl(iy))**2)
t = 3k9*¥¥2 - 3ki0

If (tege.0.) go to 37

negr = negr + 1

ellig)e2) = 1e401%el(ig)el)¥sqrtlakll)

go to 38

ul(iy)) = (ak9+sart(t))*0.5/ak1i1l

ri(i,})) = elliy)ol)/ulliagg)

plliy)) = Pllig))F(La=ul (iy))*¥2=vi([y))¥¥2=nl(iy})**2)
t = plliy)) £,

if (tegtels) go to3d

negp = negp + 1 :

go to 36




92 V0lig)) = ellig)e3)/elliyv)l)
N(l") =ei(i']'l¢)/el(i'101)
93 ak9 = ellig)e2)/esiliqy)el)
akio = Ge¥akll¥ak¥* (1e=v(iy))*¥2=-n(iy))*¥2)
t = ak3*¥2 - &kl
it (tege.le) go to 94
negr = negr + 1
el(igje2) = 1e01*el(iyg)yl)*¥sartlakll)
go to 393
94 uliy)) (ak3+sart(t))*¥0.5/akil

el(igJold/uliy])

FPlia))¥(la=ulig))¥¥2-v(iy))¥¥2=wli,y])**2)

plis])
if (togtelo) go to 306 o
negp = negp + 1

36 continue ‘
return |
end :

-
~
-
-
—
-
nowonn

subroutine decodell)
dimension pl&42442)yr (42442) 3u (42 442)9v(429642) 9n(42,4L2) |
dimensicn pl{42y42)yr(42442) 4ul (42442) 9vI(L2442) 3wl (L2442) |
dimension e(uz.az.u).f(uz,az.u),g(ua.uc.u) h(kz 425 4)
dimensicn el(424,4244)
common /cCl/ pyCaUsVew
common /c?7/ iiis)))eddide]))lalniy)ty)tl
common /cll/ ak
common /cl&4/ elyeyfygeh
common /cl7/ negrynayp
common /ciB/ plyrisulsviynl
akiil = 1. = ak
common /.2C0/ Jaslb
do 36 i = 1,iii
do 36 ] = Jasll)
if (legt.0) go to 92
V'(I'l) e(i,].3)/e(i.).1)
wi(iys)) elio)old/eliqg]el)
38 aky eliygy)e2)/eliys)al)
ak10 = Lo*akl1¥ak¥(Le=vi(jia))¥¥2-nliliy))**2)
t = ak9%¥*2 - gkil
if (tege.le) go to 37
negr = negr + 1|
elig)92) = 1.04i%e(iy)91l)¥sartiaklil)
go to 38
37 ufliy})
riCiyg)

Woun

(ak9+sart(t))*0.5/ak1l
eligloddZ7ul(iygg)
plliy})) PllLe ) ¥ (La~ul (ig))*¥2=vl(iyg]))**¥2=ni(iy])**2)
1t pl(iy])
It (tegtele) go to3b
negp = negp + 1
go to 36
92 viiy]})
wliy))
93 ak9

elig)e3)/eliv)el)

elig)ott)/eliv) 1)

‘ e(ig)g2)/eliy]qel)

* ak10 u.*akn*ak'u.-vu.l)“z-wu.j)“2)
t ak9¥¥2 - akid

it (tegeele) go to 94

neqgr = negr + 1

el(lg)92) = 1e01%e(ig)ol)¥sart(aklil)

[T L O O

!




r‘

94

36

27

97

201
98

28

99
200

51
go to 93
ulis)) = (ak9tsart(t))*¥0.5/ak1l
rlis)) = elig)old/uliy,))
Plig)) = Clig] )¥(La=ulig))¥¥2-v(iyJ)¥¥2-nwliyj)®*2)
t = D‘iq])
i1 (tegtels) go to 36
negp = negp + 1
continue
return
end

subroutine prd :
dimension e(42.42,4)'f(QZ.hZ.k).g(kZ.QZgw)'h(MZ.AZ.Ql
dimension el(42y4244)

common /¢c6/ J)nyayxiuytbbyetr

common /c?/ iiis))ysidiils}yytainiy)jt,y)ti

common /c9/ |n

common /cl4/ elyesfygyhn

common /ciS/ dzsal+betsz

common /c2G/ la, lb

do 98 k = 1.4

do 27 } = J34+})]

do 27 i = 2yiili ok b

elliv)ok) = elig)yk) = al*¥(flig]ek)=Fflig)-Llek))=-bet¥(glitly] k)
“glisJekl) = (h{ig)sk)42.%eliy]ek)) ¥dz

continue

do 97 | = ja,lt

el1(14)ak) = el(lg]ok) = al¥(f(ly])sk)=f(ly)=1sk))=bet¥(g(24]q4k)
“glls]ek)) = {h(1le)sk)+2.%e(l,y),k))¥dz

do 201 ) = Jti,})1))

ei(lolok) = e‘lql'k)

continue

return

end

subroutine cor ¢ ]

dimension e(“2'“2’“)9f(k20“21“,19(“2,“29“)’h(“2’h2'“’

dimensicn el{4244244)

common /c6/ )Jnyayxiuy tbbyetr

common /c7/ iiis))leliile)l)lelnly)ty)tl

common /cl4/ elyesfsgsh

common /cl5/ dzsalsbetyz

common /c20/ )a,)b

do 200 k = 1,4

do 28 1 = jas.ll}

do 28 i= 2,4iii

eliy)ok) = 0e5%(e(ig)ok)tellis)ok)=a1*¥(fliv)+Llok)=F(ig)ak))
“pet®(glie)ek)=gli=14)ek))I=(hlis)ek)+2e¥ellis)qk))*d2)

continue

do 99 ) = Ja.)t

eflly)okK) = 0e5%(e(ly)ok)tel(1e)ok) =ai¥(T(1y]¢+13k)=f(14)sk))
“bet*¥(g(2y)ek)=g(l ) ek))=(h{ly)sk) +2.%el1(1l,)9k)) *d2)

continue

continue

return

end

subroutine ec(l)




91

90

e

dimensicn
dimensicn
dimension
dimensicn
common /c
common /c
common /c
common /cC
common /c
common /c
do 90 i =
do 90 } =
if (legt.
e(l,l,l)

elis)s2)

9(111'3)

e(isf i)

go to 90

'e‘lolvl)

eliy)e2)
el(ie)e3)
elis)oeb)
continue
return
end

subroutin
dimensicn
dimension
dimensicn
dimension
dimension
dimensicn
dimensicn
common /¢
common /¢
common /c
common /c
common /c
common /c
common /c
common /c
common /c
common /c
common /c
do 34 i =
do 34 )
if (legt
vV

WN

tb(1)
ftb(2)
ftb(3)
fo(y)
gb(1)
gb(2)
gb(3)
gb(4)

do 85 k
fCis) k)

p(h.’.’.h'.’),r‘(%Z.%Z).u(«Z'MZI,v(QZ,l.Z) s (4Z2442)
PLIGZ2342) 9t (L2442) gul (42442) av] (L2 442)9enl(42442)
(U242 44) s F(L2942+4)99(64294L4294) (424424 4)
el(4244244)

17 PeraUsVe W

L/ im',myimlglm'

11/ ak

14/ elyeysfygyeh

187 plarlsulovienl

20/ jJas.lb
1.im
Jbsjm

0) go to 91

= rlliyg))*¥ul (iy)) T

pl(ils))¥ak + el(ie) 1) ¥ulliy))

eliqg)o1)¥vi(iy]))

eliysJ o L)¥wi(iy))

rliyJ)¥uliys))

Pligs))¥ak + celiqg)ol)®uliy])
elis)s1)¥vlis))
efligdsl)¥nliy))

e fanht(t)
Pl42442) yr (42942) qult2 442) g v U2442) s (G2442)
DI (42¢42) e 1 (L42442) qul (L2¢42) gVl (L2442 ewl (L2442)
et (U2442) 9 xi(424u42) 4chil(42) 4ypsill2)
et {42+42) 9 xil(L424,42)ychi 1(42)4psil "42)
eluy429U) g F(L204294) 3glu2y4244) 9124424 4)
el(L24,42,44)
ftb(4)eab(4)

1/ DeyfsUyVe W

4/ im,jm,lml.lml

6/ J)lnyasxiuystbbyetr

8/ xisetyxityetl

10/ xirschi.psischilypsil

11/ ak

137 s

14/ elseyfogeh

16/ delchibydelpsibydelchil

187 Dl-rl,ul'vl,nl

20/ ja,]b
i.lm
JbeIm

0) go to 86
vifis))/s -
wl(iqg))s/s -
vw¥rlliy))
vw¥riliyg])*ul(iy))
vw¥r i (iye))*vi(i,y))
VV‘P‘(‘.,)’N'(‘.’])
WH¥r [ (i,y))
Wh¥r i (Qe))*¥ul (Qiy))
WH¥r L (ie))*viliy))
wh¥rt (ie )V *wlliy))
1+4
= (chil()*gb(k)+fb(k)I¥chil())/etl(i,y]))

ettliy)V*ulliy))
xilCiy Jd¥ullis))

- ak¥pl(iy))®%eti(i,y))
+ ak¥pl(iy))/s
e 3K’D|(l,l)'x"(lgl)

+ ak*pl(iy))/s




G |

85

86

35
34

40

63

110
113

e N it P

gils)ek) lki » ftEp*ibinl

Nlle)ek) = (too¥fbin)e(l.+2%cnil(}))¥%1DOI¥goIK)I/ psilli)=-xiu)

flle)ek) = fllyeloek)/detctil

glis)ek) = gllig)ek)/psiltiml)

go to 34

vV = ville})/s - etliqs)V*uli,y}))

nwW = Wllie))/s = xiflig))*uli,])

fo(1) = vww¥r(iys))

fpl2) = vwv¥*rliys))®ulis)) - ak¥p (ig))¥et(i,))

fb(3) = ww¥r (i) ®*vliy)) ¢ ak¥pliy}))/s

fb(g) = w¥r (iys)) ¥wliv]))

gb(1) = WwW¥*r(iy))

gb(2) = W r(ie)d%uliy)) = ak¥pliye))®xiliy))

gb(3) = wn¥*r(iqs))*vlis}) )

gb(4) = ww¥r(iq))¥wlig)) + ak¥pliys))/s

do 35 k = 1,4

flisJok) = (chi(})*gb(k) ¢ fo(k))*chi())/et(i,))

glly) k) = (psili)®¥fo(k) + gb(k))¥psi(i)/(xilis})=xir)

hiiy)ask) = (psili)*¥flis)ek)+chi()) ¥glis)er))/(Lle=osili)¥chi()})
-tblk)*psi(i)/(xi(iyg))=xir)
-gblk)*¥*chi(})/Zet(iy})

fliy)ok) = fliyg)lyk)/delchib '

g(iv"k) = g(i,J,K)/delpSib

continue

continue i AR =T ST

return ;

end

subroutine pr
dimensicn plu2s42) yr (42442) qulb2,4,42)yv{L2442) ymw(2,42)
dimension et (42442)yxi(42442)
dimension nl(#Z.hZ).rl(uz,QZ),ul(QZ,QZ),VI(QZ,QZ).WI(«Z.&Z)
dimensicn ettt (42442) yxillu2,42)
common /Cl/ pPsCyUgVewn
common /c4/ imyey)imeimi,Jml
common /c7/ Lide )} Jedidiile)))lelnly)ty]tl
common /c9/ §n :
common /cl1d8/ Dlvfqu'qV'oWl
partial output
print 110

print 113' (0(1"’11311"1'2)

print 114, (pi(1,J1)y JI1=1,4)11,2)
print 148y, (ri(lyJ1)y JI1=14]11,42)
print 148, (vi(i,)1), )1=14)11,2)

print 110

print 113, (pliy2)y4i=1yime2)
print 114, (pl(ile2)y il1=14imlye2)
print 110

do 40 k = 1,43

print 113 (plkey})y)=)t1y)m)
print 110

do 63 k = 143

print 114, (pllky)l)y JI=)tle)ml)
print 110

return

format (2x)
format (“p "4y2%420f8.4)

Wt o ey e L 5 A T4 e



111
121

52

53

46

64

formai (Ynl*%e2x;20t8.4)
format (“ri1*.2x4+2018¢4%)
format ("viI"eZx,20f8e4)

end

subroutine prcoord
dimension et(42,42)yxi(42,42)
dimension et (u2 42) yxil(424y42)
common /cL/ imy)meimiqjml
common /c8/ xisetyxilyetl
common /c9/ )n

partial coord output

Ini = )Jn + 1

print 121

print 111, (et(l14+))s1=14]1nl, &)
print 121

return

format (et 42x420f8.4)
format (2x)

end

subroutinre prfin
dimensicn pl424+42) 9r(u2442) 3ult2442) g v(42442) 4w l(&2,y42)
dimension et (424,42)yxi(u42442)schi(k2)ypsi(42)
dimensicn pll42464C)er 1 (42442) sul (42,42) 3vI(42,42) 4l (42442)
dimension et1(42442) oxid (u2442)9chil (42)4psil (42)
dimension etb(42)4xib(42)
dimensicn p2(42,42) 4p3(42442)
common /Cl/ pPeTyUgVen
common /c2/ Jasamspeypiysamd
common /¢c3/ hhydccedcpytdegdcclydeplt
common /c&/ imy)meimlis)mi
common /¢cb/ JInsa,xiuytbbyetr
common /c7/ iiis))leddiile))Jlalnls]ty)tl
common /c8/ xisetoxilyeti
common /cY9/ Jn
common /cl10/ xirschispsiechilspsil
common /cl8/ plyrtsulasvient
coordinates
print 125
do 52 i=1yime2
print 126, (et(is))e)=14Imy2)
print 125
do 53 i=14ims2
prlnf 127, (xl(is)).l=1,lm'2)

do 46 ) = Jny)m

etb()) = (chi(j)*xiu)/(1.+cni(}}¥tbb)
xib(}) = tbb¥etb(}))

print 12°¢

print 12€&, (etb(i)y)=Inyim)

print 129, (xin(j)s)=)Jnyjm)

print 12¢

do 64 il =14iml1,2

prlnt 135’ (etl(Ll.ll).)l=1.)ml.2)
print 125 s
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47

95

202

54

55

56

57

58

66

96

203

67

68

69

70

71

do 6% il = 1,iml,2
prlnt 1391 (xil(il.ll).]l=1']ml,2)

print 125
field
ak9 = 2./ (ga¥*(am**2))

do 47 J=i4)mMm

do 47 i=141im

p2liv)) = pliygy))/plimy)m)

do 95 i= 1,im

print 130y, (p2(is))e)=1414)
print 125

do 202 i = 1yim

print 130, (p2(is))se)1=15,28)
print 125

do 54 (=1,2

print 130, (p2(iy))se])=29,)m)
print 125

do 55 i=1yimy6

prinf 131, ( r(i.]).]=1ylmq4)

" print 125

do 56 i=1simy6

print 132y ( ulis])ei=1s)met)
print 125

do 57 i=1,1imsb

print 133y ( v(ige))ei=1s)myts)
print 125

do 58 i=1yime6

print 134y ( wlie})sl=1s)im,y4)
print 125

Jink = In = 4

Jin2d = jfn * 2
print 131, ( r(i,}),
print 132y ( ufllsj),
print 133, ( V(iq’)q
print 134y ( wlls)d,
print 125

do 66 )1 = 1,4])ml

do 06 il = 1,iml
p3(ilyey}t) = pl(itgitd¥/pilimtyyml)
do 96 il = 14iml 5

print 140, (p3(ity}llyJi1=1,14)
print 125

do 203 il = 1,4iml

print 140, (p3(ily]l)4)1=15,28)
print 125

do 67 il = 1,2

print 140, (P3(ily11),4)1=29,)ml)
print 125

do 68 il = 14imlsb

print 141, (r1 il 1)y ) i=1y)mlok)
print 125

do 69 il = 1,iml,.06

print 142y (Ul lilya)l)s)l=1lysimiets)

— - — A
ot un
T e — e

print 125

do 70 il = 14iml,6

print 143, (vIi(ilel1)y)i=1,Imlq&)
print 125

do 71 il = 1,1iml,456
print 14bky (Wi(ily)l)y)l=1y)miek)
print 125 ‘




60

74

48

72

125
126
127
128
129
130
131
132
133
134
136
137
138
139
140
141
142
143
144
145

cip = (.

clpt = Ce

Yind = &t = 1

do 60 ]1=%,)]n3

clp = clp + (p2 (L, 141)+p2(1 1)) ¥ (et (1, )¢l)-et(iy)))/2.
clp = clp + (p2(iy2)+p2(iy1))*(et(iy2)-2t(1,1))/4.

clp = clp + p2(Ll,}in)¥(l.=et{1,})In))

do 74 l' = 21]‘“3

clpl = clpl + (p3(L,y )1+ 4p3(1,J 1)) F(ctl(l,)Jl+1)-ti(Ll,y)l))/2. |
clpl = clpl +(p3{1:2)+p3(1lyl))¥(ett(Lly2)-etl(141))/ 4.

clpl = clp! + p3 (14 In)*¥(1a=etl(1,])n)) i
cl = ak9¥(ctip=cipt)

cd = ak9¥clip*tde

cld = cli/cd

print 137, clycd,cld

print 125

do 48 ) = 14)nm

do 48 i = 1,im

p2(is)) = akG*¥(p2liy)i-1a)
print 13ty (pz(ly))s)=1,14)
print 13¢t, (p2(14))45)=15,428)
print 136y (p2(i4}))49]1=29,y)m)

print 125
do 72 ll = 1'lml o %lfL '
do 72 il = 1,iml

p3Cily) 1) = 3k9¥(p3(ila§1)=1,)
print 145, (p3(14))e)=1,412)
print 1“50 (Ds(lol)g]=13v]m,
print 125

return

format (2x)

format ("ot ,2x,10f8.4)

format (“xi"¢2x9106f83.4)

format (“etb*yxy16f8.4)

format (“Xib*yxy15f8.4)

format (“p*“s3x+16f8s4)

format (*“r"y3xes16f8.4)

format ("u",Sx;ibe.#)

format ("v''e3x+15f844)

format ("W s3x,16f8.4%)

format (“cp'"y2x4s16f8.4)

format (*cl ="y,f8elyuXe*Cd =g fB8elolixy*cl/cd ="yf8s4)
format (“etl",xy16f8.4)

format (“xil™yxs16f8.4)

fermat (“DI™e2%x,16f8.4)

format ("ri1'"y2xy16f8.4)

format ("ul"y2xy10f8e4) f
format ("vi*',2%xy16f8.4) 3
format ("wl"™42x,16f8.4) ]
format (“cpl™yxy16f8.4) ;

end E

subroutire mod(l) .

dimensicn plu2,42) 40 (42,42)3ullt2442) 3y viL29L2) 43w (bL2y42)
dimensicn plu2e42) 30l (L2442) qul (42442C) gVl (U2 442) gl (L2 442)
dimensicn et (42y42) 9 xi(42942) 9ychilul)4psilé&)




ity

/

82

81

dimensi
common
common
common
common
common
common
common
common
common
common
i Clag
do 82 )
psSis
di

il
dxir
D(iy,l
r{i,j1
U(lq)‘
V(lo]l
will,)i)
return

)
)
)
)

do 81
psis
di

i

dxir
pl(1,))
rid{i,])
U'(iy))
vi(i,}))
wi(1,])
return

end

on etllbh2,42) yxit U242l schillb2lsnsit i)
/Cl/ PyrgUyVe A

/c3/ hhydccydcpytdegdcclydep |
/cu/ lm,lm'imlqlml

/cb/ ))lnyasxiugtobsetr

/cT/ iids)))aidila)))leinly)tegtl
/c8/ xisetyxilyetl

£¢c34 in

/c10/ xirschispsischilypsil

fecl 8/ D|9P|1U|9V"N'

/cl13/ s

t.0) go to 83

I = Jt1,])11

tde®* (1 +(ton-xiW*¥chil(yNN)/(s¥(Llethn¥chil(}1)))

i« ¢ (psis/dcpl)

ifix(di) ’

i Cibel 1=l €1 40 ) 20 ih U bt Vh=x1T (L 1&1e 1 1))
Pl Cils} v (pititsdl ¢ S 1)=al{ 1l ) 1) dxie
cllil ] Nl lCLldL s j )=l ity 1)) dxir
Ul Cilg )N e (ullilsl,y)t)=ullily)iN)*dxir
VvIiCile ) DDt (it+l, ) )=vi(ily)l))*dxir
WlCilod D+l (il+lyJl)=wilil,y]d))*dxir

W o un

= Jti.1)1} ng XS
({xiu=xir)*tpop¥*chil))=xir)/ (letr*too-xiv)¥chil}])+etr)
1. ¢+ {(psis+thh)/dc)H

ifix(di)

(il (L)) =xilig}))/(xili4le]))=xiliy])))
pliys))+lplitty))=-plisg)))¥oxir

iyl ¥ lr Ll =0 Gl g V)T axir
uliqglittulitli ) -ulia)d)*exir
vliel)ebulielsjl=vliy) PV axir

Wlig))t w(itl,))=wliys}))*axir

o mou o
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Table 1

Normal Section Angle Dependence on Span and Shock
Angle for Design Mach Numbers 2 and 4

s* S/ 6
By = 45 60 <V IR 60
8/8y = 0.328  0.374 0.593 0.663 0.629
6% =14.744  22.411 17.784  29.846  37.7%8
My = 2. 2. 4. 4. 4.
: 0 0. 0. B, iy O 0.
0.2 0.3749 0.1819 | 1.1225  0.6490  0.2751
0.4 0.6638 0.3495 | 1.5164 1.0023 0.5075
0.6 0.8458 0.4931 1.4753  1.1367 0.6800
0.8 0.9463 0.6092 | 1.3820  1.1718  0.7983
: 1.0 0.9974 0.6995 | 1.2995  1.1683 0.8761
2.0 1.0327 0.9086 1.1052 1.0862  0.9998
4.0 1.0133 0.9804 1.0292  1.0272  1.0095
10.0 1.0024 0.9973 1.0048  1.0047 1.0023
- . 1. 1. 1. 1.
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Table 2

On-Design Normal Section Shock Angle

SR b b A <R

s* Bﬁ
gD = 30 45 A
0 90 90. 90
0.2 73.532 82.029 86.712
0.4 60.449 74.775 83.540
0.6 51.388 68.666 80.580
0.8 45.392 63.786 77.898
1.0 41.410 60.000 . f'' ' 75.523
2.0 33.690 50.769 67.792
4.0 31.003 46.686 62.688
10.0 30.165 45.284 60.484
20.0 30.049 45.071 60.123
© 30 45. 60

sen ot aner gy v
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Attached Algorithm

Table 4

Case Constants

P Be e

s M, L 3 (n)jm

1.9 14 x 14 .85

1.8 .90

2.0 28 x 28 .50

1.8 .60

1.6 .65

1.55 16 x 16 .80

1.50 , .85

4.0 FelCE LT O

3.5 .80

4.0 .40

3.5 14 x 14 50

3.0 .55

2.5 .75

Detached Algorithm
= My = T2 & ™ N tu &

1 ‘1.6 HAxHM 1B 1.0 1.0 2.637  2.276
2 1.7 28 x24  1.467  1.40 5.882  1.225
1.5 24 x 24 0.980
1.4 24 x 24 1.225
1.35 16 x 24 0.980
1.3 20 x 24 0.980
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Deflection Angle, Deg.

1 | | | \I

0
90 80 70 60 * 90 40

Shock Wave Angle, Deg.

Figure 3. SPAN INFLUENCE ON SIDE EDGE SHOCK QOF WEAK AND STRONG TYPE
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Figure 4. ATTACHED SHOCK FLOW TURNING IN SURFACE PLANE
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Figure 5.

COORDINATE SYSTEM




Figure 6. GRID DEFINITION AND DOMAIN (APBC)
FOR LOWER REGION




Figure 7.

GRID DEFINITION AND DOMAIN (DMEF)
FOR UPPER REGION
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Figure 8. SURFACE BOUNDARY CONDITION CONSTRAINTS
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Figure 9. SYMMETRY PLANE BOUNDARY CONDITION INTERPOLATION
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oo

Mach Number, M

L] | I g5 | | | |
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mach Cone/Surface Intersection, Ny

Figure 11. MACH CONE INTERSECTION WITH SURFACE, ATTACHED SHOCK

.
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Figure 12.
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PRESSURE DISTRIBUTIONS FROM SURFACE TO FREE STREAM ALONG
SYMMETRY PLAME: s*=2, BD=35°
(a) 6= 5.75°, M_= 1.6, 1.8, 2.0
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Figure 12 (concluded)

(b) 6 = 22.18%°, M = 2.5, 3.0, 3.5, 4.0
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Figure 13 (continued). (b) 6= 5.75°, M_= 1.3, 1.4, 1.55, 2.0
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S e a—

Figure 14. SHOCK TRACES; s*=2, By = 35°

(a) &=5.75°, M_=1.55, 1.6, 1.8, 2.0




Figure 14 (continued) (b) & = 5.75%°, M_ = 1.3, 1.4, 1.55




Figure 14 (concluded) (c) & = 22.18%, M_ = 2.5, 3.0, 3.5, 4.0
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Figure 15. LIFT COEFFICIENT VARIATION WITH MACH NUMBER; §= 5.75°, Bp 350
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l Figure 16. DRAG COEFFICIENT VARIATION WITH MACH NUMBER;
6§ = 5.75°, By = 359
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Figure 17. LIFT AND DRAG COEFFICIENT VARIATIONS WITH MACH NUMBER;
6 = 22.18°, By = 35°
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